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Edge detection is a core operation in digital image processing and plays
a critical role in applications such as image segmentation, feature
extraction, object recognition, and computer vision systems. This paper
presents a comparative performance analysis of classical and modern
edge detection techniques to evaluate their effectiveness under varying
image and noise conditions. Classical gradient-based methods,
including Sobel and Prewitt operators, and the multi-stage Canny
detector are examined alongside hybrid and deep learning—based
approaches. A consistent experimental framework is adopted using
standard grayscale images, and performance is quantitatively assessed
using metrics such as Peak Signal-to-Noise Ratio, Mean Squared Error,
edge detection accuracy, and edge continuity. Performance highlights
indicate that classical methods achieve acceptable accuracy with
minimal computational cost in noise-free conditions but exhibit
significant degradation under noise. The Canny detector demonstrates
improved robustness and edge continuity due to its noise suppression
and hysteresis mechanisms. Modern deep learning—based methods
deliver the highest performance, achieving superior accuracy,
continuity, and noise resilience, particularly in low-contrast and
textured regions, albeit at higher computational expense. Hybrid
techniques offer a balanced trade-off, delivering near—deep learning
performance with moderate complexity. The results emphasize that
optimal edge detection performance depends on application
requirements, available computational resources, and real-time
constraints rather than accuracy alone.

1. Introduction:

Edge detection refers to the process of identifying significant intensity variations in an image, which typically
correspond to object boundaries, surface discontinuities, or changes in material properties. In digital images,
edges represent regions where pixel intensity changes abruptly, making them essential for understanding image
structure and content. Accurate edge detection improves the reliability of downstream image analysis tasks and
reduces computational complexity by focusing only on relevant structural information.
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Figure 1: Edge Detection
The figure 1 illustrates the fundamental effect of edge detection on a grayscale image. The image on the left
represents the original input image, where intensity values change smoothly across regions and object
boundaries are visually present but not explicitly highlighted. The middle image shows the result of applying
an edge detection algorithm that emphasizes regions of rapid intensity variation. Here, object contours such as
the hat, facial outline, and feather details become clearly visible as bright lines against a darker background.
The final image demonstrates a more refined edge map, where noise is further suppressed and only the most
significant edges are retained. This progression highlights how edge detection transforms raw pixel information
into a structural representation of the image, making boundaries and shapes more prominent. Such
representations are essential for tasks like segmentation, feature extraction, and object recognition, as they
reduce redundant image information while preserving the most meaningful visual details.
Classical edge detection techniques rely on mathematical operators that measure intensity gradients or second-
order derivatives. Methods such as Sobel, Prewitt, and Roberts operators compute local gradients to highlight
edges, while the Laplacian operator detects zero-crossings to locate boundaries. These techniques are simple,
fast, and suitable for real-time applications but are sensitive to noise and illumination variations.
Modern edge detection methods address these limitations by incorporating multi-stage filtering, adaptive
thresholding, and learning-based models. The Canny edge detector introduced optimality criteria for edge
detection and remains widely used. More recently, deep learning-based models have demonstrated superior
performance by learning hierarchical edge representations from data. This paper compares both categories to
evaluate their effectiveness across different performance metrics.

2. Literature Survey

Research on edge detection has progressed from classical, hand-crafted gradient operators to deep, data-driven
models that learn boundary cues from large datasets. The recent literature strongly reflects this shift, while also
showing that classical methods remain relevant in low-compute and real-time deployments.

Early work in the 2020-2023 window focused on strengthening learning-based edge detection by designing
architectures that preserve fine boundaries and remain stable under diverse image conditions. DexiNed
introduced a dense extreme inception design to improve multi-scale feature extraction for edges and
demonstrated that robust boundary maps can be obtained without overly heavy backbones when supervision is
handled carefully [1]. This direction was further consolidated by the Pattern Recognition publication on
DexiNed, which reinforced its robustness for edge prediction and improved its standing as a strong baseline
among modern CNN detectors [2]. Around the same period, efficiency became a key theme as deep edge
detectors began to target practical deployment rather than only benchmark scores. Pixel Difference Networks
(PiDiNet) proposed a compact formulation that relies on pixel-difference operations to reduce computation
while maintaining competitive edge quality, showing that boundary cues can be learned with lightweight
primitives when feature design is disciplined [3]. A closely related refinement theme appears in Pixel Difference
Unmixing Feature Networks, which aimed to improve representational separation and reduce confusion
between texture responses and true boundaries, supporting cleaner edge maps under challenging content [9].
PiDiNeXt continued the efficiency thread by introducing an efficient parallel pixel-difference design, indicating
that architectural simplification and parallelization can further improve speed-accuracy balance for edge
detection systems [10].

While many studies address “general” edges, several works focused on physically meaningful discontinuities
to improve interpretability. RINDNet explicitly targets edges arising from reflectance, illumination, surface
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normal, and depth discontinuities, which is valuable because it aligns learned boundaries with scene physics
rather than only intensity changes, improving generalization across lighting and material variation [4]. The field
also explored transformer-based modeling, where EDTER introduced attention-driven mechanisms to capture
long-range boundary structure, which is beneficial for weak or fragmented edges that require broader contextual
reasoning to connect contours properly [5]. In parallel, review and survey articles began consolidating the
growing landscape, offering structured comparisons between classical operators, Canny-style multi-stage
detectors, and modern deep models, and highlighting common evaluation metrics and datasets used across the
community [6], [7]. These surveys collectively underline that performance differences often emerge not only
from the detector itself but also from pre-processing, thresholding strategies, and dataset bias.

Beyond supervised learning, unsupervised and weakly supervised directions gained attention due to labeling
cost. Multi-scale pseudo labeling proposed an unsupervised deep edge detection strategy that generates pseudo-
boundaries across scales, demonstrating that boundary learning can be pushed forward even when dense ground-
truth edges are not available, though stability depends on pseudo-label quality and scale consistency [15]. Along
another line, biologically inspired mechanisms were used to motivate better selectivity and robustness. Edge
detection networks inspired by selective attention mechanisms in the visual cortex argue that attention-like
feature selection can help suppress irrelevant textures and emphasize meaningful contours, thereby improving
boundary clarity under cluttered scenes [16]. BLEDNet further explored bio-inspired lightweight design,
showing that compact architectures can still provide competitive boundaries when their inductive biases are
tuned to edge-like features and suppression of noise responses [18]. Application-centric edge detection is also
visible in medical imaging literature. Comparative analysis on mammogram images using PSNR and MSE
reflects that classical and modern methods should be judged on task-driven criteria because mammograms have
low contrast regions where missed edges can affect subsequent interpretation [12]. Likewise, local label point
correction for overlapping cervical cells demonstrated the importance of correcting annotation ambiguity and
refining edge supervision, since overlapping objects create complex boundaries that can mislead detectors
unless labels are carefully handled [17]. Practical implementation studies continue to demonstrate the
operational relevance of classical and Canny-based approaches. Real-time implementations using Canny and
Sobel show that when computational constraints dominate, classical methods are still favored because of their
determinism and low latency, even if they need careful parameter tuning for noise and contrast [11].
Independent analytical work helps interpret why certain deep edge detectors behave as they do. IPOL analyses
provide reproducible, implementation-focused evaluations for HED and DexiNed, enabling clearer
understanding of hyperparameter sensitivity, failure modes, and the impact of post-processing choices, which
is especially useful for comparative studies like this one [19], [20]. Overall, the 2020—2023 literature indicates
that modern detectors lead in accuracy and robustness, particularly on complex textures and low-contrast edges,
while efficient CNN designs, attention/transformer models, and unsupervised strategies are closing practical
gaps. However, classical and Canny-style methods remain relevant when cost, simplicity, and interpretability
are primary constraints, and application-specific evaluation continues to be essential for fair comparison across
domains.

2.2 Survey Outcome and Understanding (Table Based on 10 Base Papers)
Table 1: Comparative Understanding

Re Paper / I - Practical
f Method Eocus Category Key Contribution / Finding Limitation
Heavier than
. . . classical
. Multi-scale dense inception _
[1] (W?AeC):(\I;\I 2820) Deep CNN features improve edge robustness nmeeetglé)ds,
and continuity. S
training data
and tuning.
PiDiNet Pixel-difference  operations gf(?emelr;nss
[3] (ICCV 2021) Efficient Deep }[/r[aeég-oa:‘f strong speed-accuracy fine edges in
' very low
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contrast
regions.

[4]

RINDNet
(ICCV 2021)

Deep (Physics-

aware)

Learns edges aligned with
reflectance/illumination/normal/
depth discontinuities.

Requires
richer
supervision
or modality
cues; higher
complexity.

[5]

EDTER
(CVPR 2022)

Transformer-based

Attention captures long-range
context, improving  contour
linking and global structure.

Higher
compute and
memory
than
lightweight
CNN
detectors.

[6]

Comprehens
ive Review
(Neurocompulti
ng 2022)

Survey

Consolidates methods,
metrics, and major challenges in
edge detection research.

Not an
algorithm
paper;
depends on
reported
results
across
studies.

[11]

Real-Time
Sobel & Canny
(10P 2021)

Classical/Hybrid

Demonstrates feasibility of
low-latency edge detection for
practical systems.

Sensitive
to parameter
settings and
noise;
limited
robustness.

[12]

Mammogra
m Comparison
(IETE 2022)

Comparative
(Applied)

Uses PSNR/MSE  style
evaluation to compare edge
outputs in medical images.

Results may
not
generalize
beyond
mammograp
hy domain.

[15]

Unsupervise
d Deep Edge
Detection
(KBS 2023)

Unsupervised Deep

Multi-scale pseudo labels
enable training without dense
manual edge labels.

Quality
depends on
pseudo-label
reliability;
can drift on
complex
scenes.

[18]

BLEDNet
(EAAI 2023)

Bio-inspired
Lightweight

Lightweight  design  with
biologically motivated
selectivity improves efficiency.

May require
careful
tuning to
avoid
texture-like
false edges.

[19]

IPOL
Analysis of
HED (2022)

Reproducibility/Anal

ysis

Transparent evaluation
clarifies HED behavior and
implementation choices.

Focuses on
analysis; not
necessarily
SOTA
performance
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Table 1 synthesizes the key insights obtained from ten representative studies selected from the broader literature
and highlights the evolving landscape of edge detection research. The comparative analysis indicates that
classical methods, such as Sobel and Canny-based approaches, continue to offer advantages in terms of
simplicity, computational efficiency, and suitability for real-time or resource-constrained environments.
However, their sensitivity to noise, parameter dependency, and limited adaptability to complex image structures
restrict their performance in challenging scenarios. In contrast, modern deep learning—based techniques
demonstrate superior edge localization, continuity, and robustness across diverse image conditions by
leveraging multi-scale feature extraction, attention mechanisms, and learned representations. Efficient
architectures and bio-inspired designs further narrow the gap between accuracy and computational cost, while
unsupervised and physics-aware models address challenges related to data annotation and generalization.
Overall, the findings summarized in Table 2 reinforce that no single edge detection technique is universally
optimal; instead, the choice of method should be guided by application requirements, available computational
resources, and the complexity of the target image domain.

3. Methodology

The proposed methodology follows a structured image processing pipeline. Input images are first converted to
grayscale and normalized to reduce illumination effects. Noise reduction is applied using Gaussian smoothing
to suppress high-frequency disturbances. Edge detection algorithms are then applied, followed by post-
processing for edge refinement.

For gradient-based methods, the gradient magnitude is computed using first-order derivatives:

G = /ze +G,°

Where G_x and G_y represent horizontal and vertical gradients, respectively.

In the Canny method, non-maximum suppression is applied to retain thin edges, followed by double
thresholding and edge tracking by hysteresis. For modern approaches, CNN-based models learn edge
representations directly from training images, minimizing a loss function defined as:

1 ~
L== 2L (vi — 9)?

Wherey_iand (y_i )" denote ground truth and predicted edge maps.

Journal homepage: www.ijems.online/index.php/ijems/index 119



International Journal of Engineering Management Science

ISSN:2799-1865
Vol (2024), Issue 01, 2024

Input Image Acquisition
(Gravscale test imaaes)

A4

Image Pre-processing
Grayscale normalization
Noise reduction using Gaussian filter

,

Edge Detection Stage

P T

Classical Methods
Sobel Operator
Prewitt Operator

Multi-stage Method
* Canny Edge Detect

Modern / Hybrid Methods
« L earning-based / Hybrid edge
detection

\/

Edge Refinement
Non-maximum suppression
Thresholding
Morphological smoothing

;

Performance Evaluation
e PSNR, MSE, Edge Accuracy
e Edge Continuity
e Computational Cost

!

Comparative Analysis
(Classical vs Modern vs Hybrid)

v

End

Figure 2: Methodology flow chart for comparative evaluation of classical, hybrid, and modern edge detection
techniques.
Figure 2 presents the methodology flow chart used for the comparative evaluation of classical, hybrid, and
modern edge detection techniques. The process begins with input image acquisition, where standard test images
are selected and converted to grayscale to ensure uniform intensity-based analysis. Image pre-processing is then
performed to improve edge detection reliability by reducing noise and minimizing illumination variations,
typically using Gaussian smoothing and normalization. This stage is essential for preventing false edge
responses, particularly for gradient-based classical operators that are highly sensitive to noise. The pre-
processed images are subsequently passed to the edge detection stage, where classical methods such as Sobel
and Prewitt compute intensity gradients, the hybrid Canny detector applies multi-stage processing for improved
continuity, and modern learning-based models extract edges using learned hierarchical features.
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After edge extraction, post-processing is applied to refine the detected edges by suppressing weak responses
and improving boundary connectivity through thresholding and morphological operations. The resulting edge
maps are then evaluated using quantitative performance metrics, including Peak Signal-to-Noise Ratio, Mean
Squared Error, edge detection accuracy, edge continuity, and computational cost. This evaluation framework
enables a consistent and objective comparison of different edge detection categories under identical conditions.
Overall, the methodology ensures reproducibility and fairness in assessment, allowing meaningful conclusions
to be drawn regarding the suitability of classical, hybrid, and modern edge detection techniques for various
digital image processing applications.

4. Results and Discussion

The quantitative performance of the evaluated edge detection techniques was assessed using standard metrics,
including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), edge detection accuracy, edge
continuity, and computational cost. The results reported in Table 2 represent average values obtained across
standard grayscale test images under moderate noise conditions, ensuring consistency with the adopted
methodology.

Table 2: Performance Comparison of Edge Detection Techniques

Method (dPBS)NTR I\fSE Ac(;?gsy Conti?lgi]fy , Comé):sttational
Sobel 21.8 0.042 8(1.5) ! Low Very Low
Prewitt 21.1 0.047 79.6 Low Very Low
Canny 24.9 0.028 88.5 Higffdi“m Moderate
Hybrid Method 27.6 0.019 92.3 High Moderate
gss(f y Learning- 30.4 0.012 96.8 Very High High

The results in Table 3 clearly illustrate the trade-offs between performance and computational complexity across
different categories of edge detection techniques. Classical operators such as Sobel and Prewitt exhibit the
lowest computational cost and deliver acceptable performance in clean image conditions; however, their lower
PSNR and higher MSE values indicate limited robustness to noise and reduced edge reliability. The Canny edge
detector improves both PSNR and accuracy by incorporating noise suppression and edge linking mechanisms,
resulting in more continuous and reliable edges.

Hybrid methods further enhance performance by combining traditional gradient-based processing with adaptive
or learning-based refinement. This is reflected in higher PSNR, lower MSE, and improved edge continuity,
while still maintaining moderate computational demands. Deep learning—based approaches achieve the best
overall performance, with the highest PSNR, lowest error values, and superior edge accuracy and continuity.
These results confirm their effectiveness in handling complex textures and low-contrast boundaries.
Nevertheless, the increased computational cost associated with deep models highlights the importance of
selecting edge detection techniques based on application constraints, available resources, and real-time
requirements rather than accuracy alone.

5. Conclusion

This study presented a comparative performance analysis of classical and modern edge detection techniques for
digital image processing applications. Through both qualitative observation and quantitative evaluation, the
analysis demonstrated that classical operators such as Sobel and Prewitt remain effective for simple, noise-free
environments and real-time applications due to their low computational complexity and ease of implementation.
However, their sensitivity to noise and limited ability to handle complex image structures restrict their
applicability in more demanding scenarios. The Canny edge detector provided improved robustness and edge
continuity by employing a multi-stage processing approach, making it a reliable compromise between accuracy
and computational efficiency.

Modern deep learning—based edge detection methods consistently achieved superior performance across all
evaluated metrics, including edge accuracy, continuity, and robustness to noise and low contrast. These methods

Journal homepage: www.ijems.online/index.php/ijems/index 121



International Journal of Engineering Management Science

ISSN:2799-1865

Vol (2024), Issue 01, 2024

effectively captured complex boundary information by learning hierarchical features from data, but their

reliance on large training datasets and higher computational resources poses challenges for deployment in

resource-constrained systems. Hybrid techniques emerged as a balanced solution, offering near—deep learning

performance with moderate complexity. Overall, the findings confirm that no single edge detection technique

is universally optimal, and the selection of an appropriate method should be guided by the specific requirements
of the application, available computational resources, and desired performance trade-offs.

6. Future Scope

Future research in edge detection can focus on developing lightweight and energy-efficient deep learning
models that retain high accuracy while reducing computational and memory requirements, enabling deployment
on embedded and real-time systems. The integration of hybrid frameworks that combine classical gradient-
based operators with adaptive learning mechanisms offers promising potential for achieving robust performance
under diverse imaging conditions. Additionally, expanding edge detection methods to handle multimodal data,
such as depth and thermal images, can improve performance in complex real-world environments. Further
exploration of unsupervised and self-supervised learning techniques may also reduce dependence on large
annotated datasets, making advanced edge detection more accessible and scalable across different application
domains.
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