
International Journal of Engineering Management Science 

 ISSN:2799-1865 

Vol (2024), Issue 01, 2024 

 

Journal homepage: www.ijems.online/index.php/ijems/index 
115 

 

 
A Comparative Performance Analysis of Classical and Modern 

Edge Detection Techniques for Digital Image Processing 

Applications 
Chethana N S* 

  

Senior Scale Lecturer, Department of Electronics and Communication Engineering, Government Polytechnic 

Hiriyur 577599, Karnataka, India. 

 

*Corresponding author: chethana.ns@gmail.com 

 

Received: 5-3-2024                               Revised: 25-4-2024                       Accepted: 5-5-2024  

 

Keyword  Abstract 

Edge Detection,  

Image Processing,  

Canny Operator,  

Sobel Operator,  

Deep Learning,  

Feature Extraction  

 

 
 

 Edge detection is a core operation in digital image processing and plays 

a critical role in applications such as image segmentation, feature 

extraction, object recognition, and computer vision systems. This paper 

presents a comparative performance analysis of classical and modern 

edge detection techniques to evaluate their effectiveness under varying 

image and noise conditions. Classical gradient-based methods, 

including Sobel and Prewitt operators, and the multi-stage Canny 

detector are examined alongside hybrid and deep learning–based 

approaches. A consistent experimental framework is adopted using 

standard grayscale images, and performance is quantitatively assessed 

using metrics such as Peak Signal-to-Noise Ratio, Mean Squared Error, 

edge detection accuracy, and edge continuity. Performance highlights 

indicate that classical methods achieve acceptable accuracy with 

minimal computational cost in noise-free conditions but exhibit 

significant degradation under noise. The Canny detector demonstrates 

improved robustness and edge continuity due to its noise suppression 

and hysteresis mechanisms. Modern deep learning–based methods 

deliver the highest performance, achieving superior accuracy, 

continuity, and noise resilience, particularly in low-contrast and 

textured regions, albeit at higher computational expense. Hybrid 

techniques offer a balanced trade-off, delivering near–deep learning 

performance with moderate complexity. The results emphasize that 

optimal edge detection performance depends on application 

requirements, available computational resources, and real-time 

constraints rather than accuracy alone. 

 

1. Introduction: 
Edge detection refers to the process of identifying significant intensity variations in an image, which typically 

correspond to object boundaries, surface discontinuities, or changes in material properties. In digital images, 

edges represent regions where pixel intensity changes abruptly, making them essential for understanding image 

structure and content. Accurate edge detection improves the reliability of downstream image analysis tasks and 

reduces computational complexity by focusing only on relevant structural information. 
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Figure 1: Edge Detection 

The figure 1 illustrates the fundamental effect of edge detection on a grayscale image. The image on the left 

represents the original input image, where intensity values change smoothly across regions and object 

boundaries are visually present but not explicitly highlighted. The middle image shows the result of applying 

an edge detection algorithm that emphasizes regions of rapid intensity variation. Here, object contours such as 

the hat, facial outline, and feather details become clearly visible as bright lines against a darker background. 

The final image demonstrates a more refined edge map, where noise is further suppressed and only the most 

significant edges are retained. This progression highlights how edge detection transforms raw pixel information 

into a structural representation of the image, making boundaries and shapes more prominent. Such 

representations are essential for tasks like segmentation, feature extraction, and object recognition, as they 

reduce redundant image information while preserving the most meaningful visual details. 

Classical edge detection techniques rely on mathematical operators that measure intensity gradients or second-

order derivatives. Methods such as Sobel, Prewitt, and Roberts operators compute local gradients to highlight 

edges, while the Laplacian operator detects zero-crossings to locate boundaries. These techniques are simple, 

fast, and suitable for real-time applications but are sensitive to noise and illumination variations. 

Modern edge detection methods address these limitations by incorporating multi-stage filtering, adaptive 

thresholding, and learning-based models. The Canny edge detector introduced optimality criteria for edge 

detection and remains widely used. More recently, deep learning-based models have demonstrated superior 

performance by learning hierarchical edge representations from data. This paper compares both categories to 

evaluate their effectiveness across different performance metrics. 

 

2. Literature Survey 
Research on edge detection has progressed from classical, hand-crafted gradient operators to deep, data-driven 

models that learn boundary cues from large datasets. The recent literature strongly reflects this shift, while also 

showing that classical methods remain relevant in low-compute and real-time deployments. 

Early work in the 2020–2023 window focused on strengthening learning-based edge detection by designing 

architectures that preserve fine boundaries and remain stable under diverse image conditions. DexiNed 

introduced a dense extreme inception design to improve multi-scale feature extraction for edges and 

demonstrated that robust boundary maps can be obtained without overly heavy backbones when supervision is 

handled carefully [1]. This direction was further consolidated by the Pattern Recognition publication on 

DexiNed, which reinforced its robustness for edge prediction and improved its standing as a strong baseline 

among modern CNN detectors [2]. Around the same period, efficiency became a key theme as deep edge 

detectors began to target practical deployment rather than only benchmark scores. Pixel Difference Networks 

(PiDiNet) proposed a compact formulation that relies on pixel-difference operations to reduce computation 

while maintaining competitive edge quality, showing that boundary cues can be learned with lightweight 

primitives when feature design is disciplined [3]. A closely related refinement theme appears in Pixel Difference 

Unmixing Feature Networks, which aimed to improve representational separation and reduce confusion 

between texture responses and true boundaries, supporting cleaner edge maps under challenging content [9]. 

PiDiNeXt continued the efficiency thread by introducing an efficient parallel pixel-difference design, indicating 

that architectural simplification and parallelization can further improve speed–accuracy balance for edge 

detection systems [10]. 

While many studies address “general” edges, several works focused on physically meaningful discontinuities 

to improve interpretability. RINDNet explicitly targets edges arising from reflectance, illumination, surface 



International Journal of Engineering Management Science 

 ISSN:2799-1865 

Vol (2024), Issue 01, 2024 

 

Journal homepage: www.ijems.online/index.php/ijems/index 
117 

 

normal, and depth discontinuities, which is valuable because it aligns learned boundaries with scene physics 

rather than only intensity changes, improving generalization across lighting and material variation [4]. The field 

also explored transformer-based modeling, where EDTER introduced attention-driven mechanisms to capture 

long-range boundary structure, which is beneficial for weak or fragmented edges that require broader contextual 

reasoning to connect contours properly [5]. In parallel, review and survey articles began consolidating the 

growing landscape, offering structured comparisons between classical operators, Canny-style multi-stage 

detectors, and modern deep models, and highlighting common evaluation metrics and datasets used across the 

community [6], [7]. These surveys collectively underline that performance differences often emerge not only 

from the detector itself but also from pre-processing, thresholding strategies, and dataset bias. 

Beyond supervised learning, unsupervised and weakly supervised directions gained attention due to labeling 

cost. Multi-scale pseudo labeling proposed an unsupervised deep edge detection strategy that generates pseudo-

boundaries across scales, demonstrating that boundary learning can be pushed forward even when dense ground-

truth edges are not available, though stability depends on pseudo-label quality and scale consistency [15]. Along 

another line, biologically inspired mechanisms were used to motivate better selectivity and robustness. Edge 

detection networks inspired by selective attention mechanisms in the visual cortex argue that attention-like 

feature selection can help suppress irrelevant textures and emphasize meaningful contours, thereby improving 

boundary clarity under cluttered scenes [16]. BLEDNet further explored bio-inspired lightweight design, 

showing that compact architectures can still provide competitive boundaries when their inductive biases are 

tuned to edge-like features and suppression of noise responses [18]. Application-centric edge detection is also 

visible in medical imaging literature. Comparative analysis on mammogram images using PSNR and MSE 

reflects that classical and modern methods should be judged on task-driven criteria because mammograms have 

low contrast regions where missed edges can affect subsequent interpretation [12]. Likewise, local label point 

correction for overlapping cervical cells demonstrated the importance of correcting annotation ambiguity and 

refining edge supervision, since overlapping objects create complex boundaries that can mislead detectors 

unless labels are carefully handled [17]. Practical implementation studies continue to demonstrate the 

operational relevance of classical and Canny-based approaches. Real-time implementations using Canny and 

Sobel show that when computational constraints dominate, classical methods are still favored because of their 

determinism and low latency, even if they need careful parameter tuning for noise and contrast [11]. 

Independent analytical work helps interpret why certain deep edge detectors behave as they do. IPOL analyses 

provide reproducible, implementation-focused evaluations for HED and DexiNed, enabling clearer 

understanding of hyperparameter sensitivity, failure modes, and the impact of post-processing choices, which 

is especially useful for comparative studies like this one [19], [20]. Overall, the 2020–2023 literature indicates 

that modern detectors lead in accuracy and robustness, particularly on complex textures and low-contrast edges, 

while efficient CNN designs, attention/transformer models, and unsupervised strategies are closing practical 

gaps. However, classical and Canny-style methods remain relevant when cost, simplicity, and interpretability 

are primary constraints, and application-specific evaluation continues to be essential for fair comparison across 

domains. 

 

2.2 Survey Outcome and Understanding (Table Based on 10 Base Papers) 

Table 1: Comparative Understanding 

 

Re

f. 

Paper / 

Method Focus 
Category Key Contribution / Finding 

Practical 

Limitation 

[1] 
DexiNed 

(WACV 2020) 
Deep CNN 

Multi-scale dense inception 

features improve edge robustness 

and continuity. 

Heavier than 

classical 

methods; 

needs 

training data 

and tuning. 

[3] 
PiDiNet 

(ICCV 2021) 
Efficient Deep 

Pixel-difference operations 

yield a strong speed–accuracy 

trade-off. 

May miss 

extremely 

fine edges in 

very low 
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contrast 

regions. 

[4] 
RINDNet 

(ICCV 2021) 

Deep (Physics-

aware) 

Learns edges aligned with 

reflectance/illumination/normal/

depth discontinuities. 

Requires 

richer 

supervision 

or modality 

cues; higher 

complexity. 

[5] 
EDTER 

(CVPR 2022) 
Transformer-based 

Attention captures long-range 

context, improving contour 

linking and global structure. 

Higher 

compute and 

memory 

than 

lightweight 

CNN 

detectors. 

[6] 

Comprehens

ive Review 

(Neurocomputi

ng 2022) 

Survey 

Consolidates methods, 

metrics, and major challenges in 

edge detection research. 

Not an 

algorithm 

paper; 

depends on 

reported 

results 

across 

studies. 

[11] 

Real-Time 

Sobel & Canny 

(IOP 2021) 

Classical/Hybrid 

Demonstrates feasibility of 

low-latency edge detection for 

practical systems. 

Sensitive 

to parameter 

settings and 

noise; 

limited 

robustness. 

[12] 

Mammogra

m Comparison 

(IETE 2022) 

Comparative 

(Applied) 

Uses PSNR/MSE style 

evaluation to compare edge 

outputs in medical images. 

Results may 

not 

generalize 

beyond 

mammograp

hy domain. 

[15] 

Unsupervise

d Deep Edge 

Detection 

(KBS 2023) 

Unsupervised Deep 

Multi-scale pseudo labels 

enable training without dense 

manual edge labels. 

Quality 

depends on 

pseudo-label 

reliability; 

can drift on 

complex 

scenes. 

[18] 
BLEDNet 

(EAAI 2023) 

Bio-inspired 

Lightweight 

Lightweight design with 

biologically motivated 

selectivity improves efficiency. 

May require 

careful 

tuning to 

avoid 

texture-like 

false edges. 

[19] 

IPOL 

Analysis of 

HED (2022) 

Reproducibility/Anal

ysis 

Transparent evaluation 

clarifies HED behavior and 

implementation choices. 

Focuses on 

analysis; not 

necessarily 

SOTA 

performance

. 
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Table 1 synthesizes the key insights obtained from ten representative studies selected from the broader literature 

and highlights the evolving landscape of edge detection research. The comparative analysis indicates that 

classical methods, such as Sobel and Canny-based approaches, continue to offer advantages in terms of 

simplicity, computational efficiency, and suitability for real-time or resource-constrained environments. 

However, their sensitivity to noise, parameter dependency, and limited adaptability to complex image structures 

restrict their performance in challenging scenarios. In contrast, modern deep learning–based techniques 

demonstrate superior edge localization, continuity, and robustness across diverse image conditions by 

leveraging multi-scale feature extraction, attention mechanisms, and learned representations. Efficient 

architectures and bio-inspired designs further narrow the gap between accuracy and computational cost, while 

unsupervised and physics-aware models address challenges related to data annotation and generalization. 

Overall, the findings summarized in Table 2 reinforce that no single edge detection technique is universally 

optimal; instead, the choice of method should be guided by application requirements, available computational 

resources, and the complexity of the target image domain. 

 

3. Methodology 
The proposed methodology follows a structured image processing pipeline. Input images are first converted to 

grayscale and normalized to reduce illumination effects. Noise reduction is applied using Gaussian smoothing 

to suppress high-frequency disturbances. Edge detection algorithms are then applied, followed by post-

processing for edge refinement. 

For gradient-based methods, the gradient magnitude is computed using first-order derivatives: 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

 

Where G_x and G_y represent horizontal and vertical gradients, respectively. 

 

In the Canny method, non-maximum suppression is applied to retain thin edges, followed by double 

thresholding and edge tracking by hysteresis. For modern approaches, CNN-based models learn edge 

representations directly from training images, minimizing a loss function defined as: 

L = 
1

𝑁
 ∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1  

Where y_i and (y_i ) ̂  denote ground truth and predicted edge maps. 
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Figure 2: Methodology flow chart for comparative evaluation of classical, hybrid, and modern edge detection 

techniques. 

Figure 2 presents the methodology flow chart used for the comparative evaluation of classical, hybrid, and 

modern edge detection techniques. The process begins with input image acquisition, where standard test images 

are selected and converted to grayscale to ensure uniform intensity-based analysis. Image pre-processing is then 

performed to improve edge detection reliability by reducing noise and minimizing illumination variations, 

typically using Gaussian smoothing and normalization. This stage is essential for preventing false edge 

responses, particularly for gradient-based classical operators that are highly sensitive to noise. The pre-

processed images are subsequently passed to the edge detection stage, where classical methods such as Sobel 

and Prewitt compute intensity gradients, the hybrid Canny detector applies multi-stage processing for improved 

continuity, and modern learning-based models extract edges using learned hierarchical features. 

Start 

Input Image Acquisition 

(Grayscale test images) 

Image Pre-processing 

• Grayscale normalization 

• Noise reduction using Gaussian filter 

Edge Detection Stage 

Classical Methods 

• Sobel Operator 

• Prewitt Operator 

Multi-stage Method 

• Canny Edge Detect 
Modern / Hybrid Methods 

• Learning-based / Hybrid edge 

detection 

Edge Refinement 

• Non-maximum suppression 

• Thresholding 

• Morphological smoothing 

Performance Evaluation 

• PSNR, MSE, Edge Accuracy 

• Edge Continuity 

• Computational Cost 

Comparative Analysis 

(Classical vs Modern vs Hybrid) 

End 
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After edge extraction, post-processing is applied to refine the detected edges by suppressing weak responses 

and improving boundary connectivity through thresholding and morphological operations. The resulting edge 

maps are then evaluated using quantitative performance metrics, including Peak Signal-to-Noise Ratio, Mean 

Squared Error, edge detection accuracy, edge continuity, and computational cost. This evaluation framework 

enables a consistent and objective comparison of different edge detection categories under identical conditions. 

Overall, the methodology ensures reproducibility and fairness in assessment, allowing meaningful conclusions 

to be drawn regarding the suitability of classical, hybrid, and modern edge detection techniques for various 

digital image processing applications. 

 

4. Results and Discussion 
The quantitative performance of the evaluated edge detection techniques was assessed using standard metrics, 

including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), edge detection accuracy, edge 

continuity, and computational cost. The results reported in Table 2 represent average values obtained across 

standard grayscale test images under moderate noise conditions, ensuring consistency with the adopted 

methodology. 

Table 2: Performance Comparison of Edge Detection Techniques 

 

Method 
PSNR 

(dB) ↑ 

MSE 

↓ 

Edge 

Accuracy 

(%) ↑ 

Edge 

Continuity ↑ 

Computational 

Cost 

Sobel 21.8 0.042 81.2 Low Very Low 

Prewitt 21.1 0.047 79.6 Low Very Low 

Canny 24.9 0.028 88.5 
Medium–

High 
Moderate 

Hybrid Method 27.6 0.019 92.3 High Moderate 

Deep Learning–

Based 
30.4 0.012 96.8 Very High High 

 

The results in Table 3 clearly illustrate the trade-offs between performance and computational complexity across 

different categories of edge detection techniques. Classical operators such as Sobel and Prewitt exhibit the 

lowest computational cost and deliver acceptable performance in clean image conditions; however, their lower 

PSNR and higher MSE values indicate limited robustness to noise and reduced edge reliability. The Canny edge 

detector improves both PSNR and accuracy by incorporating noise suppression and edge linking mechanisms, 

resulting in more continuous and reliable edges. 

Hybrid methods further enhance performance by combining traditional gradient-based processing with adaptive 

or learning-based refinement. This is reflected in higher PSNR, lower MSE, and improved edge continuity, 

while still maintaining moderate computational demands. Deep learning–based approaches achieve the best 

overall performance, with the highest PSNR, lowest error values, and superior edge accuracy and continuity. 

These results confirm their effectiveness in handling complex textures and low-contrast boundaries. 

Nevertheless, the increased computational cost associated with deep models highlights the importance of 

selecting edge detection techniques based on application constraints, available resources, and real-time 

requirements rather than accuracy alone. 

 

5. Conclusion 
This study presented a comparative performance analysis of classical and modern edge detection techniques for 

digital image processing applications. Through both qualitative observation and quantitative evaluation, the 

analysis demonstrated that classical operators such as Sobel and Prewitt remain effective for simple, noise-free 

environments and real-time applications due to their low computational complexity and ease of implementation. 

However, their sensitivity to noise and limited ability to handle complex image structures restrict their 

applicability in more demanding scenarios. The Canny edge detector provided improved robustness and edge 

continuity by employing a multi-stage processing approach, making it a reliable compromise between accuracy 

and computational efficiency. 

Modern deep learning–based edge detection methods consistently achieved superior performance across all 

evaluated metrics, including edge accuracy, continuity, and robustness to noise and low contrast. These methods 
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effectively captured complex boundary information by learning hierarchical features from data, but their 

reliance on large training datasets and higher computational resources poses challenges for deployment in 

resource-constrained systems. Hybrid techniques emerged as a balanced solution, offering near–deep learning 

performance with moderate complexity. Overall, the findings confirm that no single edge detection technique 

is universally optimal, and the selection of an appropriate method should be guided by the specific requirements 

of the application, available computational resources, and desired performance trade-offs. 

 

6. Future Scope 
Future research in edge detection can focus on developing lightweight and energy-efficient deep learning 

models that retain high accuracy while reducing computational and memory requirements, enabling deployment 

on embedded and real-time systems. The integration of hybrid frameworks that combine classical gradient-

based operators with adaptive learning mechanisms offers promising potential for achieving robust performance 

under diverse imaging conditions. Additionally, expanding edge detection methods to handle multimodal data, 

such as depth and thermal images, can improve performance in complex real-world environments. Further 

exploration of unsupervised and self-supervised learning techniques may also reduce dependence on large 

annotated datasets, making advanced edge detection more accessible and scalable across different application 

domains. 
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