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ABSTRACT 

 

The proportionate normalized least mean square (PNLMS) algorithm, a popular tool for sparse system 

identification, achieves fast initial convergence by assigning independent step sizes to the different taps, 

each being proportional to the magnitude of the respective tap weight. However, once the active (i.e., 

non-zero) taps converge, the speed of convergence slows down as the effective step sizes for the inactive 

(i.e., zero or near zero) taps become progressively less. In this paper, we try to improve upon both the 

convergence speed and the steady state excess mean square error (EMSE) of the PNLMS algorithm, by 

introducing a l1 norm (of the coefficients) penalty in the cost function which introduces a so-called zero-

attractor term in the PNLMS weight update recursion. The zero attractor induces further shrinkage of the 

coefficients, especially of those which correspond to the inactive taps and thus arrests the slowing down 

of the convergence of the PNLMS algorithm, apart from bringing down the steady state EMSE. We have 

also modified the cost function further generating a reweighted zero attractor which helps in confining the 

“Zero Attraction” to the inactive taps only. 

 

1. INTRODUCTION 

Broadband signal transmission is becoming a 

commonly used high-data-rate technique for 

next-generation wireless communication 

systems, such as 3 GPP long-term evolution 

(LTE) and worldwide interoperability for 

microwave access(WiMAX) 

[1].Thetransmission performance of coherent 

detection for such broadband communication 

systems strongly depends on the quality of 

channel estimation [2–5]. Fortunately, 

broadbandmultipath channels can be accurately 

estimated using adaptive filter techniques 

[6]such as the normalized least-mean-square 

(NLMS) algorithm, which has low complexity 

and can be easily implemented at the receiver. 

On the other hand, channel measurements have 

shown that broadband wireless multipath 

channels can often be described by only a small 

number of propagation paths with long delays 

[4]. Thus, a broadband multipath channel can be 

regarded as a sparse channel with only a few 

active dominant taps, while the other inactive 

taps are zero or close to zero. This inherent 

sparsity of the channel impulse response (CIR) 

can be exploited to improve the quality of 

channel estimation. However, such classical 

NLMS algorithms with a uniform step size 

across all filter coefficients have slow 

convergence when estimating sparse impulse 

response signals such as those in broadband 

sparse wireless multipath channels. 

Consequently, corresponding algorithms have 

recently received significant attention in the 

context of compressed sensing (CS) and were 

already considered for channel estimation prior 

to the CS era [5]. However, these CS channel 

estimation algorithms are sensitive to the noise 

in wireless multipath channels. 

Inspired by the CS theory several zero-attracting 

(ZA) algorithms have been proposed and 

investigated by combining the CS theory and the 

standard least-meansquare (LMS) algorithm for 

echo cancellation and system identification, 

which are known as the zero-attracting LMS 

(ZA-LMS) and reweighted ZA-LMS (RZA-
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LMS) algorithms, respectively. Recently, this 

technique has been expanded to the NLMS 

algorithm and other adaptive filter algorithms to 

improve their convergence speed in a sparse 

environment. However, these approaches are 

mainly designed for nonproportionate adaptive 

algorithms. On the other hand, to utilize the 

advantages of the NLMS algorithm, such as 

stable performance and low complexity, the 

proportionate normalized least-mean-square 

(PNLMS) algorithm has been proposedand 

studiedtoexploit the sparsity innature and has 

been applied to echo cancellation in telephone 

networks.  

Although the PNLMS algorithmcan utilize the 

sparsity characteristics of a sparse signal and 

obtain faster convergence at the initial stage by 

assigning independent magnitudes to the active 

taps, the convergence speed is reduced by even 

more than that of the NLMS algorithm for the 

inactive taps after the active taps converge. 

Consequently, several algorithms have been 

proposed to improve the convergence speed of 

the PNLMS algorithm which include the use of 

the 𝑙 1-norm technique and a variable step size. 

Although these algorithms have significantly 

improved the convergence speed of the PNLMS 

algorithm, they still converge slowly after the 

active taps converge. In addition, some of them 

are inferior to the NLMS and PNLMS 

algorithms in terms of the steady-state error 

when the sparsity decreases. From these 

previously proposed sparse signal estimation 

algorithms, we know that the ZA algorithms 

mainly exert a penalty on the inactive channel 

taps through the integration of the 𝑙 1-norm 

constraint into the cost function of the standard 

LMS algorithms to achieve better estimation 

performance, while the PNLMS algorithm 

updates each filter coefficient with an 

independent step size,which improves the 

convergence of the active taps. 

2. RELATED CHANNEL ESTIMATION 

ALGORITHMS 

2.1. Normalized Least-Mean-Square Algorithm. 

In this section, we first consider the sparse 

multipath communication system shown in 

Figure 1 to discuss the channel estimation 

algorithms.The input signal x(𝑛) = [𝑥(𝑛),𝑥(𝑛 − 

1), . . . , 𝑥(𝑛 −𝑁+1)]𝑇 containing the𝑁most 

recent samples is transmitted over a finite 

impulse response (FIR) channel with channel 

impulse response (CIR) h = [ℎ0, ℎ1, . . . , 

ℎ𝑁−1]𝑇, where (⋅)𝑇denotes the transposition 

operation. Then the output signal of the channel 

is written as follows: 

 

where h is a sparse channel vector with 𝐾 

dominant active taps whose magnitudes are 

larger than zero and (𝑁 − 𝐾) 

inactive taps whosemagnitudes are zero or close 

to zero with 𝐾 ≪ 𝑁. To estimate the unknown 

sparse channel h, anNLMS algorithm uses the 

input signal x(𝑛), the output signal 𝑦(𝑛), and the 

instantaneous estimation error 𝑒(𝑛), which is 

given by 

 

2.2. Proportionate Normalized Least-Mean-

Square Algorithm. 

The PNLMS algorithm, which is an NLMS 

algorithm improved by the use of a 

proportionate technique, has been proposed for 

sparse system identification and echo 

cancellation. In this algorithm, each tap is 

assigned an individual step size, which is 

obtained from the previous estimation of the 

filter coefficient. According to the gain 

allocation rule in this algorithm, the greater the 

magnitude of the tap, the larger the step size 

assigned to it, and hence the active taps 

converge quickly. The update function of the 

PNLMS algorithm is described by the following 

equation with reference to Figure 1: 
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Figure 1: Typical sparse multipath communication system. 

3. IMPROVED PROPORTIONATE 

NORMALIZED LEAST-MEAN-SQUARE 

ALGORITHMS 

3.1. IPNLMS Algorithm.  

The IPNLMS algorithm is a type of PNLMS 

algorithmused to improve the convergence speed 

of the PNLMS algorithm. It is a combination of 

the PNLMS and NLMS algorithms with the 

relative significance of each coefficient 

controlled by a factor 𝛼. The IPNLMS algorithm 

[20] adopts the 𝑙 1-norm to enable the smooth 

selection of (7), and the update equation of the 

IPNLMS algorithm is expressed as  

 

where K(𝑛) = diag(𝑘0(𝑛), 𝑘1(𝑛), . . . , 𝑘𝑁−1(𝑛)) 

is a diagonal matrix used to adjust the step size 

of the IPNLMS algorithm, where 

 

3.2. MPNLMS Algorithm. The 𝜇-law PNLMS 

algorithm 

(MPNLMS) is another enhancement of the 

PNLMS algorithm that utilizes the logarithm of 

the magnitudes of the filter coefficients instead 

of using the magnitudes directly in the PNLMS 

algorithm [21]. The update equation is the same 

as that in the PNLMS algorithmgiven by (4). In 

theMPNLMS algorithm, 
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4. RESULTS AND DISCUSSIONS 

In this section,we present the results of computer 

simulations carried out to illustrate the channel 

estimation performance of the proposed LP-

PNLMS algorithm over a sparse multipath 

communication channel and compare it with 

those of the previously proposed IPNLMS, 

MPNLMS, PNLMS, and NLMS algorithms. 

Here, we consider a sparse channel h whose 

length 𝑁 is 64 or 128 and whose number of 

dominant active taps 𝐾 is set to three different 

sparsity levels, namely, 𝐾 = 2,4 and 8, similar to 

previous studies [6, 22, 25, 26]. The dominant 

active channel taps are obtained from a Gaussian   

 
Figure 2: Typical sparse multipath channel. 

distribution with ‖h‖22= 1, and the positions of 

the dominant channel taps are randomly spaced 

along the length of the channel. The input signal 

x(𝑛) of the channel is a Gaussian random signal 

while the output of the channel is corrupted by 

an independent white Gaussian noise V(𝑛). An 

example of a typical sparse multipath channel 

with a channel length of 𝑁 = 64 and a sparsity 

level of 𝐾 = 3 is shown in Figure 2. In the 

simulations, the power of the received signal is 

𝐸𝑏= 1, while the noise power is given by 𝛿2V 

and the signal -to-noise ratio is defined as SNR 

= 10 log(𝐸𝑏/𝛿2V ). In all the simulations, the 

difference between the actual and estimated 

channels based on the sparsity-aware algorithms 

and the sparse channel mentioned above is 

evaluated by the MSE defined as follows: 

 
The convergence behavior of the proposed 

algorithms is also sensitive to the choice of the 

parameter ρg. We demonstrate this in Fig. 3 by 

considering the ZA-PNLMS algorithm (we do 

not consider the RZA-PNLMS algorithm here in 

order to avoid crowding, after noting from above 

that its performance is almost identical to that of 

the ZA-PNLMS algorithm) for ρg = 0.01, 0.05, 

0.1. For comparison, we also plot the learning 

curve (EMSE-vs-iteration index n) of the 

PNLMS algorithm for ρg = 0.01. It is seen that 

the steady state EMSE of the ZA-PNLMS 

algorithm decreases as ρg increases. This can be 

easily explained by first noting from (4) that in 

the steady state, as the inactive tap weights attain 

values very close to zero, the corresponding 

γl(n) is given by ρg times the maximum tap 

weight magnitude. From this and the fact that 

�N−1i=0 gl(n) = 1, it follows that as ρg 

increases, the gain gl(n) and thus the effective 

step sizes for the active taps decrease. As a 

result, their contribution to the EMSE decreases 

(for the inactive taps, however, the marginal 

increase in the EMSE that an increasing ρg 

could give rise to is offset by the zero attractors). 

Of course, the reduction in the effective step 

sizes for the active taps tries to slow down the 

initial fast convergence somewhat. However, as 

can be seen from Fig. 3, such slowing down 

effect is marginal. 
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Fig. 3. The effect of ρg on the steady state 

EMSE of the ZA-PNLMS algorithm. 

CONCLUSION 

In this paper, we have proposed an LP-PNLMS 

algorithm to exploit the sparsity of broadband 

multipath channels and to improve both the 

convergence speed and steady-state performance 

of the PNLMS algorithm.This algorithm was 

mainly developed by incorporating the gain-

matrix-weighted 𝑙 𝑝-norm into the cost function 

of the PNLMS algorithm, which significantly 

improves its convergence speed and steady-state 

performance. The simulation results 

demonstrated that our proposed LP-PNLMS 

algorithm, which has an acceptable increase in 

computational complexity, increases the 

convergence speedand reduces the steady-state 

error comparedwith the previously proposed 

PNLMS algorithms. 
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