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ABSTRACT 

 

The Non-Negative Least-Mean-Square (NNLMS) algorithm and its variants have been proposed for 

online estimation under non-negativity constraints. The transient behavior of the NNLMS, Normalized 

NNLMS, Exponential NNLMS and Sign-Sign NNLMS algorithms have been studied in the literature. In 

this letter, we derive closed-form expressions for the steady-state excess mean-square error (EMSE) for 

the four algorithms. Simulation results illustrate the accuracy of the theoretical results. This work 

complements the understanding of the behavior of these algorithms. This algorithm builds on a fixed-

point iteration strategy driven by the Karush–Kuhn–Tucker conditions. It was shown to provide low 

variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this 

paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a 

theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking 

performance. We also introduce an extension of the algorithm for online sparse system identification. 

Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the 

theoretical results. 

 

1. INTRODUCTION 

NON-NEGATIVITY is one important constraint 

that can be imposed on parameters to estimate. It 

is often imposed to avoid physically 

unreasonable solutions and to comply with 

natural physical characteristics. Non-negativity 

constraints appear, for example, in 

deconvolution problems [1]–[3], image 

processing [4], [5], audio processing [6], remote 

sensing [7]–[9], and neuroscience. The Non-

Negative Least-Mean-Square algorithm 

(NNLMS) and its three variants, namely, 

Normalized NNLMS, Exponential NNLMS and 

Sign-Sign NNLMS were proposed to adaptively 

find solutions of a typical Wiener filtering 

problem under non-negativity constraints. The 

transient behavior of these algorithms has been 

studied. Analytical recursive models have been 

derived for the mean and mean-square behaviors 

of the adaptive weights. 

This paper complements the work by deriving 

closed form expressions for the steady-state 

excess mean square error of each of these 

algorithms. These expressions cannot be directly 

obtained from the transient recursions derived in 

because the weight updates include 

nonlinearities on the adaptive weights. 

Moreover, they cannot be derived following the 

conventional energy-conservation relations. 

Hence, new analyses are required to understand 

the steady-state behavior of these algorithms. In 

this paper, we derive accurate models for the 

steady-state behaviors of NNLMS and its 

variants using a common analysis framework, 

with clear physical interpretation of each term in 

the expressions. Simulations are conducted to 

validate the theoretical results. This work 

therefore complements the understanding of the 

behavior of these algorithms, and introduces a 

new methodology for the study of the steady-

state performance of adaptive algorithms. We 

recommend that readers refer to for a more 

detailed understanding of the algorithms and 

their transient behavior. Readers may also refer 

to the associated report for some detailed 

calculation steps.  

Online learning aims at determining a mapping 

from a dataset to the corresponding labels when 
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the data are available in a sequential fashion. In 

particular, algorithms such as the Least-Mean-

Square (LMS) and the Recursive Least-Square 

(RLS) algorithms minimize the mean square-

error cost function in an online manner based on 

input/ output measurement sequences [1,2]. In 

practice, rather than leaving the parameters to be 

estimated totally free and relying on data, it is 

often desirable to introduce some constraints on 

the parameter space. These constraints are 

usually introduced to impose some specific 

structures, or to incorporate prior knowledge, so 

as to improve the estimation accuracy and the 

interpretability of results in learning systems 

[3,4]. The nonnegativity constraint is one of the 

most frequently used constraints among several 

popular ones [5]. It can be imposed to avoid 

physically unreasonable solutions and to comply 

with physical characteristics. For example, 

quantities such as intensities [6,7], chemical 

concentrations [8], and material fractions of 

abundance [9] must naturally fulfill 

nonnegativity constraints. 

Nonnegativity constraints may also enhance the 

physical interpretability of some analyzed 

results. For instance, Nonnegative Matrix 

Factorization leads to more meaningful image 

decompositions than Principle Component 

Analysis (PCA). PCA and neural networks can 

also be conducted subject to nonnegativity 

constraints in order to enhance result 

interpretability. 

Finally, there are important problems in signal 

processing that can be cast as optimization 

problems under nonnegativity constraints. Other 

applications of learning systems related to 

nonnegativity constraints can be found. 

Nonnegativity constrained problems can be 

solved in a batch mode via active set methods 

gradient projection methods and multiplicative 

methods to cite a few. Online system 

identification methods subject to nonnegativity 

constraints can also be of great interest in 

applications that require to adaptively identify a 

dynamic system. An LMS-type algorithm, called 

the non-negative least-mean-square (NNLMS) 

algorithm, was proposed to address the least-

mean-square problem under nonnegativity 

constraints. It was derived based on a stochastic 

gradient descent approach combined with a 

fixed-point iteration strategy that ensures 

convergence toward a solution satisfying the 

Karush–Kuhn–Tucker (KKT) conditions. In 

several variants of the NNLMS were derived to 

improve its convergence behavior in some sense. 

2. MOTIVATING FACTS AND THE 

ALGORITHM  

2.1. Motivation 

The weight update in (6) corresponds to the 

classical stochastic gradient LMS update with its 

ith component scaled by αi(n). The mean value 

of the update vector Dα(n)x(n)e(n) is thus no 

longer in the direction of the gradient of J(α), as 

is the case for LMS. On the other hand, it is 

exactly this scaling by αi(n) that enables the 

corrections αi(n)xi(n)e(n) to reduce gradually to 

zero for coefficients αi(n) tending to zero, which 

leads to low-variance estimates for these 

coefficients.1 If a coefficient αk(n) that 

approaches zero turns negative due to the 

stochastic update, its negative sign will induce a 

change αk(n)xk(n)e(n) in the kth weight 

component that is contrary to what would 

indicate the stochastic gradient, and thus towards 

zero. 

The presence of the factor αi(n) in the update 

αi(n)xi(n)e(n) of the ith coefficient leads to 

different convergence rates for coefficients of 

different values. This is particularly problematic 

for the coefficients in the active set as they 

approach zero. Because of the factor αi(n), the 

convergence of these coefficients eventually 

stalls due to  insignificant correction along their 

axes. Though the algorithm leads to a very low 

steady-state error for these coefficients, this 

happens only after a long convergence process. 

In addition, the dispersion of coefficient values 

introduces difficulties for step size selection and 

coefficient initialization, since each estimated 

coefficient acts as a  different directional gain 

for the same step size. In order to address these 

problems, it is of interest to derive a variant of 

the NNLMS algorithm that satisfies the 

following requirements: 
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! The coefficients should converge to the fixed 

point satisfying (4), so that it still solves the 

nonnegativity constrained problem (2). 

! The sensitivity of the algorithm (6) to the 

spread of the coefficient values at each iteration 

should be reduced, yielding more balanced 

convergence rates and steady-state weight errors 

than the original algorithm (6). 

! The performance improvement should be 

achieved without introducing significant 

computational burden. 

2.2. The inversely proportional NNLMS 

algorithm 

The Exponential NNLMS replaces the gradient 

scaling αi(n) with αiγ(n) = sgn(αi(n))|αi(n)|γ, 

where γ = γ /γ 1 2 with γ1 and γ2 being two odd 

numbers such that γ > γ > 0 2 1 . This variant 

mitigates the aforementioned drawbacks of 

NNLMS to some extent, but introduces 

additional computational burden. In addition, the 

stability of the algorithm is still affected by the 

weight dynamics since αiγ(n) is unbounded.  

 

Computational complexity: 

A comparison of the computational complexities 

in the implementation of the NNLMS, 

Exponential NNLMS and IP-NNLMS 

algorithms needs to consider only the weight 

update term, since this term is what 

distinguishes the three algorithms. We consider 

their real-time implementation using N 

coefficients and m-bit integer operations. Also, 

because there exists a variety of multiplication 

algorithms, let us denote by (m) the complexity 

of the chosen algorithm to multiply two m-bit 

integers. The NNLMS update (6) sets the 

weighting function wi(n) to αi(n), and has 

complexity. The Exponential NNLMS [27] sets f 

(α) = α γ− i I 1 in (5), which leads to w(n) = |α 

(n)|α γ(n) i i i . Evaluating αiγ(n) has complexity 

of 􀀶(􀀶(m)log m) because it uses exponential and 

logarithm elementary functions. Then, IP-

NNLMS addresses the two important NNLMS 

limitations described above without a significant 

increase in computational complexity. Fig. 1 

presents the computation time required for the 

calculation of the weight updates of NNLMS, 

IP-NNLMS and Exponential NNLMS for 106 

iterations on a laptop with Matlab as a function 

of the number of filter coefficients N. This 

experiment shows that complexity of these 

algorithms increases linearly with N, with a 

factor that is significantly larger for Exponential 

NNLMS. 

 

Fig. 2. Computation time in seconds of NNLMS, 

IP-NNLMS and Exponential NNLMS for 106 

iterations as a function of the number of filter 

coefficients N. 

3. EXPERIMENT VALIDATION 

In this section, we present examples to illustrate 

the correspondence between theoretical steady-

state EMSE and simulated results for NNLMS 

and its variants. Consider an unknown system of 

order and weights defined by  
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where negative coefficients were explicitly 

included to activate the non-negativity 

constraint. 

 

Fig. 1. Steady-state EMSE model validation for 

NNLMS and its variants (a) Original NNLMS 

(b) Normalized NNLMS (c) Exponential 

NNLMS (d) Sign-Sign NNLMS. 

 

Fig. 2. Bias introduced by the assumptions made 

in the analysis. The bias is calculated as the 

relative difference of the EMSE obtained from 

simulations and predicted by the models 

CONCLUSION 

In this letter, we derived closed-form 

expressions for the steady-state excess mean-

square errors of the Non-Negative LMS 

algorithm and its variants. Experiments 

illustrated the accuracy of the derived results. 

Future work may include the derivation of other 

useful variants of NNLMS and the study of their 

stochastic performance. Future work may 

include the derivation of other useful variants of 

NNLMS and the study of their stochastic 

performance. 
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