VOLUME-2 ISSUE-4

ISSN: 2799-18

CUCR2O4NANOPARTICLES: A RELIABLE HETEROGENEOUS STIMULANT FOR THE SYNTHESIS OF BIS-THIAZOLIDINONES

Abdul Rana Ibrahim

ABSTRACT:

The preparation of bis-thiazolidinones has been achieved by a one-pot condensation reaction of araldehydes, ethylenediamine and thioglycolic acid in the presence of nano-CuCr2O4 nanoparticles under reflux conditions in toluene. This method provides several advantages including easy workup, excellent yields, short reaction times, reusability of the catalyst and low catalyst loading.

Keywords: NMR, PPI, FT-IR, Morphology, propylene.

1. INTRODUCTION:

The class of thiazolidinones includes compounds with important biological properties, such as antifungal [1], antiinflammatory [2], anti-tumor antitubercular [4], and anti-HIV [5] [3], activities. The synthesis of bioactive heterocycles from readily accessible starting materials using one-pot multicomponent reactions (MCRs) has increased significant interest both from synthetic and medicinal chemists [6,7]. A few methods have been reported for the synthesis of bis-thiazolidinones in the presence of the catalysts such as HClO4-Zeolite [9], ChCl SiO2 [8], (Choline Chloride)/urea based ionic liquid [10] and ZnCl2 [11]. Despite the availability of these methods, there remains adequate purpose to propose a new route for an efficient, high vielding, and mild approach to achieve such systems. The ecocompatibility and employment of MCRs are

enhanced when the multicomponent reaction is used in association with a heterogeneous catalyst [12]. Nanoscale heterogeneous catalysts should present higher surface areas, which are chiefly responsible for their catalytic activity [13,14]. CuCr2O4 nanoparticles, a typical example, have been used as a suitable catalyst in many including reactions synthesis pyrazolopyridines, synthesis of biscoumarins, synthesis of pyrazoles, oxidation of aniline to azoxybenzene and hydroxylation of benzene. Herein, we report the synthesis of bisthiazolidinones one-pot pseudo-fiveby component condensation of araldehydes, ethylenediamine and thioglycolic acid with nano-CuCr2O4 as a reusable and robust heterogeneous catalyst under reflux conditions in toluene (Scheme).

VOLUME-2 ISSUE-4

ISSN: 2799-18

2. RELATED STUDY:

Reagent grade chemicals and solvents were purchased from Sigma-Aldrich or Merck and were used without further purification. NMR spectra were obtained on a Bruker Avance-400 MHz spectrometer (1H NMR at 400 Hz, 13C NMR at 100 Hz) in DMSO-d6 or CDCl3 using TMS as an internal standard. Chemical shifts (δ) are given in ppm and coupling constants (J) are given in Hz. The IR spectra were recorded on FT-IR Magna 550 apparatus using with KBr plates. Melting points were determined on Electro thermal 9200, and are not corrected. The elemental analyses (C, H, N) were obtained from a Carlo ERBA Model EA 1108 analyzer. Powder X-ray diffraction (XRD) was carried out on a Philips diffractometer of X'pert Company with mono chromatized Cu K α radiation (λ = 1.5406 Å). Microscopic morphology of products was visualized by SEM.

Preparation of CuCr2O4 Nanoparticles CuCr2O4 nanoparticles:

were prepared according to the co-precipitation method reported by Edrissi et al. [22]. Cu(NO3)2·6H2O (1.4 g, 0.005 mol,) and Cr(NO3)3·9H2O (4.0 g 0.010 mol) were dissolved in distilled water (50 ml). The mixed solution was subsequently added to 100 ml of distilled water, containing 5% glycerol as capping agent, under stirring. 1.5 M aqueous solution of precipitating agent (NaOAc) was

added dropwise until the pH value of solution was adjusted to 10. During the mixing procedure, the temperature of solution was maintained about 60 °C. Then, the temperature was further increased to 80 °C at which the precipitation occurred. The fine precipitates were centrifuged and subsequently washed with distilled water and ethanol several times, and then dried in an oven at 60 °C for 2 h. Finally, after calcination at 600 °C for 5 h, CuCr2O4 nanoparticles were obtained.

3. PROPOSED METHODOLOGY:

Α mixture of aldehydes (2 mmol). ethylenediamine(1 mmol), thioglycolic acid (2 mmol) and 3 mol% of CuCr2O4 nanoparticles in PhMe (5 ml) was refluxed. The reaction was monitored by TLC. After completion of the reaction, CHC13 was added to dilute the reaction mixture after terminating the reaction. The catalyst was insoluble in the solvent and was separated by centrifuging. The CHCl3 was evaporated and the crude mixture was separated by silica gel column chromatography (diethyl ether/petroleum ether to get pure product.

The catalyst was prepared by the coprecipitation method using NaOAc solution as the precipitating agent. Cu(NO3)2·6H2O and Cr(NO3)3·9H2O were used as the starting materials for the synthesis of copper chromite nanoparticles. This method is simple and inexpensive. The XRD patterns for CuCr2O4 are

VOLUME-2 ISSUE-4 ISSN: 2799-18

shown in Fig. 1. The particle size of CuCr2O4 nanoparticles was investigated by XRD pattern. The crystallite size diameter (D) of the CuCr2O4 nanoparticles was calculated using the Debye-Scherrer equation (D = $K\lambda/\beta\cos\theta$), where FWHM (full-width at halfmaximum) is in radians and θ is the position of the maximum of diffraction peak, K is the so-called shape factor, which usually takes a value of about 0.9, and λ is the X-ray wavelength. The pattern agrees well with the reported pattern for CuCr2O4 nanoparticles (JCPDS No. 88-0110). The average particle size was estimated by applying the Scherrer formula on the highest intensity peak. An average size of around 22-28 nm was obtained. The SEM micrograph provides more accurate information on the particle size and morphology of the CuCr2O4 nanoparticles (Fig. 2). The SEM image shows that the nanoparticles have a uniform size and spherical shape. In the FT-IR (Fourier-transform infrared spectroscopy) spectra (Fig. 3), the absorption bands at 615, 514 cm-1 were assigned to Cr2O4 2- group. The bands at 911 and 999 cm-1 refer to the Cr-O bond of the chromate group [22]. To examine the effects of varying the catalyst and the reaction time for the synthesis of bisthiazolidinones, the condensation reaction of 4chlorobenzaldehyde (2 mmol), ethylenediamine (1 mmol), thioglycolic acid (2 mmol) was selected as a model. Yields were determined in the presence of MgO NPs, CuI NPs, Fe3O4 NPs

and CuCr2O4 NPs and the results are shown in Table 1 (entries 2-11). NanoCuCr2O4 gave the best yields in the shortest time and a very good yield of 84 % was obtained with 3 mol%, which was not improved by increasing to 4 mol%. A reaction run in the absence of any catalyst gave a yield of only 9 % (entry 1). The above results obviously show that the proposed catalytic procedure is extendable to a wide variety of substrates to construct a diversity-oriented library of bisthiazolidinones (Table 2). Owing to the presence of 2 and 2' equivalent stereogenic centers, bisthiazolidinones can be obtained as rac. 2R,2'R/2S,2'S and 2R,2'S-meso isomers. These bisthiazolidinones have been obtained, as previously reported, by the reaction of mercaptoacetic acid with N,N'dibenzylidenethylendiamines [20,21]. After workup, the crude mixture of isomers was separated by silica gel column chromatography (diethyl ether/petroleum ether in variable ratio mixtures). In general, meso isomers eluted more slowly than corresponding racemates. The racemate isomer 4f was obtained in higher yields than meso isomer 4f (80% for the rac. isomer 4f and 20% for the meso isomer 4f). The 1H NMR spectra of the compounds 4a-4j displayed a doublet of doublets at δ 3.80-3.95 ppm due to the methylene proton HA at C-5 (-CO-CHAHB-S) because of its interaction with the geminal proton HB at C-5 (-CO-CHAHB-S) and the proton at the chiral C-2 (S-CHAr-N); doublet of

VOLUME-2 ISSUE-4 ISSN: 2799-18

doublets at δ 3.50-3.75 ppm due to the methylene proton HB at C-5 (- CO-CHAHB-S) because of its interaction with the geminal HA (-CO-CHAHB-S) proton and diastereotopic proton Ha (-N-CHaHb-CHaCHb-N-) of the ethylene fragment. This last proton Ha (-N-CHaHb-CHaCHb-N-) displayed a doublet of doublets or a multiplet at δ 2.50-2.85 ppm because of its interaction with the germinal proton Hb (-N-CHaHb-CHaCHb-N-) and the proton HB (-CO-CHAHB-S) at the C-5. The Hb proton (-NCHaHb-CHaCHb-N-) at the aliphatic chain suffered the anisotropic effect from the near amide group or aryl substituents and it went to down field at d 3.35-4.0 ppm appearing overlapped with HB or HA (-CO-CHAHB-S) as a multiplet. These germinal protons of each methylene group reside in magnetic nonequivalent environments.

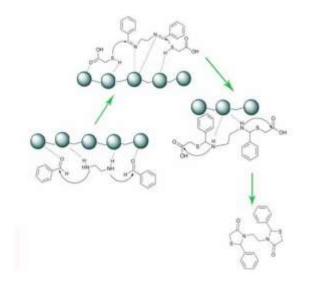


Fig.3.1. A probable mechanism for the synthesis of bis-thiazolidine derivatives.

5. CONCLUSION:

In conclusion, we have developed a simple and highly efficient protocol for the synthesis of bisthiazolidinones one-pot pseudo-fiveby component condensation of araldehydes, ethylenediamine and thioglycolic acid with nano-CuCr2O4 as a reusable and robust heterogeneous catalyst under reflux conditions in toluene. The remarkable advantages of this methodology are high yields, short reaction times, recycling of the catalyst and little catalyst loading.

REFERENCES:

- T. Okuda, S. Kawakami, T. Maeie, T. Niidome, F. Yamashita, M. Hashida, J. Controlled Release 114 (2006) 69.
- [2] S. Svenson, D.A. Tomalia, Adv. Drug Deliv.Rev. 57 (2006) 2106.
- [3] A.T. Florence, Adv. Drug Deliv. Rev. 57 (2005) 2104.
- [4] A.K. Patri, J.F. Kukowska-Latallo, J.r. Baker, Adv. Drug Deliv. Rev. 57 (2005) 2203.
- [5] M. Mamede, T. Saga, T. Ishimori, T. Higashi, N. Sato, H. Kobayashi, M.W. Brechbiel, J. Konishi, J. Controlled Release: Official Journal of the Controlled Release Soc. 95 (2004) 133.
- [6] T.F.Vandamme, L.Brobeck, J. Controlled Release 102 (2005) 23.
- [7] R.J. Marano, N. Wimmer, P.S. Kearns, B.G. Thomas, I. Toth, M. Brankov, P.E. Rakoczy, Exp. Eye Res. 79 (2004) 525.

VOLUME-2 ISSUE-4 ISSN: 2799-18

[8] R. Wiwattanapatapee, L. Lomlim, K. Saramunee, J. Controlled Release 88 (2003) 1.
[9] H. Kobayashi, S. Kawamoto, R.A. Star, T.A. Waldmann, Y. Tagaya, M.W. Brechbiel, Cancer Res. 63 (2003) 271. [10] H. Kobayashi, M.W. Brechbiel, Adv. Drug Deliv. Rev. 57 (2005) 2271.